Quantum Simulation of QFT in the Front Form

Michael Kreshchuk¹, William M. Kirby², Hugo Beauchemin², Gary Goldstein², Shaoyang Jia³, James Vary⁴, Peter J. Love^{2,5}

¹Lawrence Berkeley National Laboratory

 2 Tufts University

 3 Argonne National Laboratory 4 Iowa State University

 $^5{
m Brookhaven}$ National Laboratory

NSF DGE-1842474, DOE HEP DE-SC0019452, NSF STAQ PHY-1818914

2002.04016; 2105.10941; 2011.13443; 2009.07885

Motivation

The currently dominant approach to digital quantum simulation of QFT is based on the equal-time lattice formulation.

A lot of progress, a lot of open questions:

- Gauge symmetry protection highly non-trivial.
- Difficult to extract information about observables.
- Qubit number / lattice size:

$$Q_{QCD}$$
 (internal DOFs) L^{D-1} 400,000 qubits. (1)

Can we overcome these difficulties by using some alternative approach?

Quantum Simulation in the Front Form

Good news:

- Fact #1: Numerous techniques for the Digital Quantum Simulation of Quantum Chemistry have been developed in the last decades.
- Fact #2: QFT in the **light-front** (**LF**) ¹ formalism looks much like non-relativistic many-body physics!

 $^{^1}$ Within this talk 'front-form' 'light-front' 'light-cone'.

Quantum Field Theory in the Front Form

The "light-cone time" x^+ and "light-cone distance" x:

$$x = x^0 \quad x^1 . \tag{2}$$

From the point of view of a massless particle moving, say, to the **left**, all the massive particles move to the **right**:

All the light-cone momenta of massive particles are **positive**.

Why use the LF formulation?

	LF QFT features	Advantages for QC
Resources	No ghost fields Linear EoM	Low qubit count
	LF momentum > 0	Efficient encoding
Evolution	Sparse Hamiltonians	Using sparsity-based methods
Measurement	LF wavefunction / / static quantities; Simple form of operators in the second-quantized formalism	Simple form of measurement operators
Other	Trivial vacuum, fewer cut-offs, no fermion doubling, form invariance of H , equal treatment of matter and gauge fields in the $A^+ = 0$ gauge	

DLCQ: ϕ^4 in 1+1D

Discretized Light-Cone Quantization (DLCQ)²

= Light-Cone Hamiltonian + Second Quantization

$$\begin{split} \mathcal{L} &= \frac{1}{2} (\partial \phi)^2 - \frac{1}{2} \mathrm{m}_B^2 \phi^2 - \frac{\lambda}{4!} \phi^4 \ , \\ H &= \sum_{\mathbf{n}} \dots a_{\mathbf{n}}^y a_{\mathbf{n}} + \sum_{\mathbf{k} \mid \mathbf{m} \mathbf{n}} \dots a_{\mathbf{k}}^y a_{\mathbf{l}}^y a_{\mathbf{m}} a_{\mathbf{n}} + \sum_{\mathbf{k} \mid \mathbf{m} \mathbf{n}} (\dots a_{\mathbf{k}}^y a_{\mathbf{l}} a_{\mathbf{m}} a_{\mathbf{n}} + \mathrm{c.c.}) \ , \\ K &= \sum_{\mathbf{n}} \mathrm{n} a_{\mathbf{n}}^y a_{\mathbf{n}} \ . \end{split}$$

We solve H in the basis of Fock states fjFig:

The number of fjFig scales as $p(K) = O(\exp(\frac{D}{K}))$.

The lower bound on the number of qubits is $Q = O(\overline{K})$.

A. Harindranath., J.P. Vary, PRD 36, 1987.

 $^{^2}$ H.-C. Pauli, S.J. Brodsky, PRD $\mathbf{32},\,1985.$

Encoding Fock states

Two ways of encoding a Fock state $/F/ = /n_1^{w_1}, n_2^{w_2}, \ldots/$.

I. Direct encoding — qubits store w_i (qubit register per mode):

$$j\Psi i = j\underbrace{0101}_{w_1}\underbrace{1001}_{w_2}\dots i,$$
 (4)

$$Q_{\text{Direct}} = O(K \log K). \tag{5}$$

II. Compact encoding — qubits store n_i and w_i , only for $w_i > 0$:

$$j\Psi i = j\underbrace{\underbrace{0111}_{n_1} \underbrace{0101}_{w_1} \underbrace{1100}_{n_2} \underbrace{1001}_{w_2} \dots i}_{\text{at most } O(^{P}\overline{K}) \text{ modes}},$$
 (6)

$$Q_{\text{Compact}} = \boxed{O(\overline{K} \log K)}. \tag{7}$$

In the presence of transverse dimensions:

$$Q_{\text{Direct}} = \widetilde{O}(K\Lambda_{?}^{d-1}) \text{ vs. } Q_{\text{Compact}} = \widetilde{O}(K).$$
 (8)

Encoding Fock states

Should we always use compact mapping? No, because the choice of encoding restricts the choice of simulation algorithms.

	Trotter	Sparsity
	(product formulas)	(more advanced)
Direct	✓	✓
Compact	Х	✓

Using compact mapping results in longer circuits.

Measurement

Using QCs for simulating spectroscopy is particularly natural, as most of the LF observables have the form of

$$O = \text{poly}(a, a^{y}, b, b^{y}), \qquad (9)$$

which can be easily measured in the quantum computer, once the final state is prepared.

(Pasquini, Lorce, 2012)

NISQ: VQE + BLFQ

In order to bring the computational requirements to the range of near-term devices, we shall use the Basis Light-Front Quantization (BLFQ) technique:

 $\begin{aligned} \text{BLFQ} &= \text{Effective Light-Front Hamiltonian} + \text{Second Quantization} \\ &+ \text{Smart Basis Choice} \end{aligned}$

$$jFi = j\xi_1^{w_1}, \, \xi_2^{w_2}, \dots i \,,$$
 (10)

where ξ_j denote solutions of some single-particle equation — not necessarily the plane waves!

Indeed, it makes sense to describe a confined system in the basis of solutions of a harmonic oscillator.

NISQ: VQE + BLFQ

How to extract the very essential information from QFT?

1. Restrict to the valence sector of the meson Fock space:

$$\overline{\left[jq\overline{q}^{\,\prime}\right]}, \, jqq\overline{q}q^{\,\prime}, \, jq\overline{q}g^{\,\prime}, \, jq\overline{q}gg^{\,\prime}, \dots$$
 (11)

- 2. Use relative momentum.
- 3. Use an effective interaction:³

$$H = H_0 + H_{\text{NJL},\pi} = H_{\text{transverse}} + H_{\text{longitudinal}} + H_{\text{NJL},\pi}$$
. (12)

- 4. Use an efficient basis representation of the LF WF, the eigenbasis of H_0 :
 - The spectrum H_0 can be found analytically.
 - H_0 already incorporates confinement.
 - $H_{\text{transverse}}$ stems from AdS/QCD and corresponds to the linear confinement in equal time.

³ Jia et al., arXi v: 1811. 08512.

NISQ: VQE + BLFQ

We write the second-quantized quark Hamiltonian as:

$$H = H_1 + H_2 + \dots , (13)$$

where

$$H_1 = \sum_{i,j} h_{ij} b_i^{y} b_j , \quad H_2 = \sum_{i,j,k,l} h_{ijkl} b_i^{y} b_j^{y} b_k b_l .$$
 (14)

For the minimal cutoffs, spec $h_{ij} = f139.6^2;722.2^2;827.8^2;864.7^2g$, with the two lowest eigenvalues corresponding to the masses of π and ρ mesons.

VQE + BLFQ

Direct mapping, state:

$$j\psi(\vec{\theta})i = \alpha_1 j0001i + \alpha_2 j0010i + \alpha_3 j0100i + \alpha_4 j1000i$$
 (15)

Multi-qubit Hamiltonian:

$$H = 87397(IXXI + IYYI) \quad 53725(YZZY + XZZX)$$

$$320161(IIIZ + ZIII) \quad 173353(IZII + IIZI)$$

$$+ 69936(IIYY + IIXX + YZYI + XZXI)$$

$$IYZY \quad IXZX \quad YYII \quad XXII) + 987031IIII .$$
(16)

Ansatz circuit (the angles $f\theta_1, \theta_2, \theta_3 g$ are the VQE parameters):

VQE + BLFQ

Compact mapping, state:

$$j\psi(\vec{\alpha})i = \alpha_{00}j_{00}i + \alpha_{01}j_{01}i + \alpha_{10}j_{10}i + \alpha_{11}j_{11}i$$
. (17)

Multi-qubit Hamiltonian:

$$H = 33671XX + 141122YY + 146807ZZ + 493515II + 139872(ZX XZ).$$
 (18)

Ansatz circuit (the angles $f\theta_1, \theta_2, \theta_3 g$ are the VQE parameters):

VQE + BLFQ

VQE minimization on | bmq_v| go, 8192 samples per term:

VQE improvements and BLFQ variants

General / vanilla VQE setting:

- $H = \text{poly}(a, a^y, b, b^y).$
- Direct mapping only, because:
- Ansatz: Unitary Coupled Cluster.
- Various observables can be calculated efficiently.

VQE enhancements:

- Pauli term reduction.
- Contextual subspace VQE.
- Sparse measurements.
- Tapering off qubits.
- Extrapolation techniques.

BLFQ variants:

#

- Various interactions:
 Phenomenological (e.g. NJL)
 - # Effective (e.g. one g exchange)
 - Dynamical gluons (QCD).
- Various basis choices: 3DHO, 2DHO + plane waves, etc.

Key Takeaways

- Numerous advantages of the second-quantized LF Hamiltonian formulation come in handy at the stage of quantum simulation.
- Various LF models (phenomenology, ab initio) and quantum simulation algorithms (heuristic, Hamiltonian evolution) can be employed, depending on available resources.

Results:

- * 2002.04016 adiabatic preparation of interacting eigenstates. Qubit counts and observables for Yukawa $_{1+1}$ and QCD $_{3+1}$.
- $\star~2105.10941$ details of sparsity-based simulation in the compact encoding.
- * 2011.13443, 2009.07885 variational algorithms, unitary coupled cluster, BLFQ-NJL model of light mesons.
- Several approaches to the simulation of scattering are currently under development.

Thank YOU!!